196 research outputs found

    Molecular mechanism of wound-dependent Grh regulation

    Get PDF

    A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social Media Services

    Get PDF
    The main contribution of this paper is to present the Platform-as-a-Service(PaaS) Environment for Social Multimedia Service (PESMS), derived fromthe Social Media Cloud Computing Service Environment. The main role ofour PESMS is to support the development of social networking services thatinclude audio, image, and video formats. In this paper, we focus in particular on the design and implementation of PESMS, including the transcoding function for processing large amounts of social media in a parallel and distributed manner. PESMS is designed to improve the quality and speed of multimedia conversions by incorporating a multimedia conversion module based on Hadoop, consisting of Hadoop Distributed File System for storing large quantities of social data and MapReduce for distributed parallel processing of these data. In this way, our PESMS has the prospect of exponentially reducing the encoding time for transcoding large numbers of image files into specific formats. To test system performance for the transcoding function, we measured the image transcoding time under a variety of experimental conditions. Based on experiments performed on a 28-node cluster, we found that our system delivered excellent performance in the image transcoding function

    Serial-multiple mediation of enjoyment and intention on the relationship between creativity and physical activity

    Get PDF
    The purpose of the present study was to examine a serial-multiple mediation of physical activity (PA) enjoyment and PA intention in the relationship between creativity and PA level (i.e., moderate-to-vigorous PA). A total of 298 undergraduate and graduate students completed a selfreported questionnaire evaluating creativity, PA enjoyment, PA intention, and PA level. Data analysis was conducted using descriptive statistics, Pearson correlation coefficient, ordinary leastsquares regression analysis, and bootstrap methodology. Based on the research findings, both PA enjoyment (β = 0.06; 95% CI [0.003, 0.12]) and PA intention (β = 0.08; 95% CI [0.03, 0.13]) were found to be a mediator of the relationship between creativity and PA level, respectively. Moreover, the serial-multiple mediation of PA enjoyment and PA intention in the relationship between creativity and PA level was statistically significant (β = 0.02; 95% CI [0.01, 0.04]). These findings underscore the importance of shaping both cognitive and affective functions for PA promotion and provide additional support for a neurocognitive affect-related model in the PA domain. In order to guide best practices for PA promotion programs aimed at positively influencing cognition and affect, future PA interventions should develop evidence-based strategies that routinely evaluate cognitive as well as affective responses to PA

    Noise Filtering Method of Digital Holographic Microscopy for Obtaining an Accurate Three-Dimensional Profile of Object Using a Windowed Sideband Array (WiSA)

    Get PDF
    In the image processing method of digital holographic microscopy (DHM), we can obtain a phase information of an object by windowing a sideband in Fourier domain and taking inverse Fourier transform. In this method, it is necessary to window a wide sideband to obtain detailed information on the object. However, since the information of the DC spectrum is widely distributed over the entire range from the center of Fourier domain, the window sideband includes not only phase information but also DC information. For this reason, research on acquiring only the phase information of an object without noise in digital holography is a challenging issue for many researchers. Therefore, in this paper, we propose the use of a windowed sideband array (WiSA) as an image processing method to obtain an accurate three-dimensional (3D) profile of an object without noise in DHM. The proposed method does not affect the neighbor pixels of the filtered pixel but removes noise while maintaining the detail of the object. Thus, a more accurate 3D profile can be obtained compared with the conventional filter. In this paper, we create an ideal comparison target i.e., microspheres for comparison, and verify the effect of the filter through additional experiments using red blood cells

    Sestrins are evolutionarily conserved mediators of exercise benefits.

    Get PDF
    Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the metabolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance

    Noise reduction method using a variance map of the phase differences in digital holographic microscopy

    Get PDF
    The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatial-frequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages

    Digital holographic microscopy (DHM) using a Gaussian weighted sideband to reduce noise from DC spectrum

    Get PDF
    In a reconstruction of the 3D profile in digital holographic microscopy technology, there is a tradeoff relationship between detailed information of the target and the degree of noise depending on how wide the sideband of the Fourier domain is windowed. Besides, the conventional filtering method may not provide accurate height information because it filters using height information of surrounding pixels of the pixel to be filtered. For this reason, we propose a new filtering method that reduces noise by applying a Gaussian weighted windowed sideband in this paper. We compare the proposed filtering method with conventional filtering and verify the advantages and disadvantages of our method.13th International Conference on ITC Convergence (ICTC2021), October 20-22, 2021, Jeju, Kore
    corecore